6.7. Operator Left

  • x + y - will call method "add" on object x (x.__add__(y))

  • x - y - will call method "sub" on object x (x.__sub__(y))

  • x * y - will call method "mul" on object x (x.__mul__(y))

  • x ** y - will call method "pow" on object x (x.__pow__(y))

  • x @ y - will call method "matmul" on object x (x.__matmul__(y))

  • x / y - will call method "truediv" on object x (x.__truediv__(y))

  • x // y - will call method "floordiv" on object x (x.__floordiv__(y))

  • x % y - will call method "mod" on object x (x.__mod__(y))

Table 6.5. Numerical Operator Overload

Operator

Method

obj + other

obj.__add__(other)

obj - other

obj.__sub__(other)

obj * other

obj.__mul__(other)

obj ** other

obj.__pow__(other)

obj @ other

obj.__matmul__(other)

obj / other

obj.__truediv__(other)

obj // other

obj.__floordiv__(other)

obj % other

obj.__mod__(other)

6.7.1. SetUp

>>> from dataclasses import dataclass
>>> from functools import reduce

6.7.2. Syntax

>>> @dataclass
... class Vector:
...     x: int
...     y: int
...
...     def __add__(self, other): ...               # x + y     calls x.__add__(y)
...     def __sub__(self, other): ...               # x - y     calls x.__sub__(y)
...     def __mul__(self, other): ...               # x * y     calls x.__mul__(y)
...     def __pow__(self, power, modulo=None): ...  # x ** y    calls x.__pow__(y)
...     def __matmul__(self, other): ...            # x @ y     calls x.__matmul__(y)
...     def __truediv__(self, other): ...           # x / y     calls x.__truediv__(y)
...     def __floordiv__(self, other): ...          # x // y    calls x.__floordiv__(y)
...     def __mod__(self, other): ...               # x % y     calls x.__mod__(y)

6.7.3. Example

>>> @dataclass
... class Vector:
...     x: int
...     y: int
...
...     def __add__(self, other):
...         new_x = self.x + other.x
...         new_y = self.y + other.y
...         return Vector(new_x, new_y)
...
>>>
>>>
>>> a = Vector(x=1, y=2)
>>> b = Vector(x=3, y=4)
>>> c = Vector(x=5, y=6)
>>>
>>> (a+b) + c
Vector(x=9, y=12)

6.7.4. Use Case - 0x01

  • Game

>>> hero @ Position(x=50, y=120)  
>>>
>>> hero['gold'] += dragon['gold']  

6.7.5. Use Case - 0x02

This is our function library.

Transformation functions (non-reducing) - takes one argument and returns one value:

>>> def increment(x):
...     return x + 1
>>>
>>> def decrement(x):
...     return x - 1
>>>
>>> def square(x):
...     return x ** 2
>>>
>>> def cube(x):
...     return x ** 3

Reducing functions - takes two arguments returns one value:

>>> def add(x, y):
...     return x + y
>>>
>>> def sub(x, y):
...     return x - y
>>>
>>> def mul(x, y):
...     return x * x

We have data to compute:

>>> data = [
...     [1, 2, 3],
...     [4, 5, 6],
...     [7, 8, 9],
... ]

On this data, we want to apply the following transformations:

>>> transformations = [increment, square, decrement, cube]

We need to create apply function, which takes data and apply the transformation:

>>> def apply(data, fn):
...     return map(fn, data)

Let's do it parallel. We will create three independent workers. Each worker will get part of the data (one-third) and will apply all the transformation (map) to their data subset.

>>> workerA = reduce(apply, transformations, data[0])  # [27, 512, 3375]
>>> workerB = reduce(apply, transformations, data[1])  # [13824, 42875, 110592]
>>> workerC = reduce(apply, transformations, data[2])  # [250047, 512000, 970299]

Note, that all workers will produce generators (maps). We need to merge the results using reduce function, but before that we need to evaluate maps to lists.

>>> def merge(x, y):
...     return list(x) + list(y)
>>> merged = reduce(merge, [workerA, workerB, workerC])
>>> result = reduce(add, merged)
>>> print(result)
1903551
>>> print(merged)
[27, 512, 3375, 13824, 42875, 110592, 250047, 512000, 970299]

6.7.6. Assignments

Code 6.51. Solution
"""
* Assignment: Operator Left Matmul
* Complexity: easy
* Lines of code: 3 lines
* Time: 3 min

English:
    1. Make object understand following call: `position @ (1, 2)`
    1. Overload `@` operator, to take `tuple[int, int]` as argument
    2. Set `x` and `y` coordinates based on passed values
    3. Run doctests - all must succeed

Polish:
    1. Spraw aby obiekt obsługiwał to wywołanie: `position @ (1, 2)`
    1. Przeciąż operator `@`, aby przyjmował `tuple[int, int]` jako argument
    2. Zmień koordynaty `x` i `y` na podstawie przekazanych wartości
    3. Uruchom doctesty - wszystkie muszą się powieść

Hints:
    * `object.__matmul__()`

Tests:
    >>> import sys; sys.tracebacklimit = 0

    >>> position = Position()
    >>> position
    Position(x=0, y=0)
    >>> position @ (1, 2)
    >>> position
    Position(x=1, y=2)
"""

from dataclasses import dataclass


@dataclass
class Position:
    x: int = 0
    y: int = 0